创刊于2004年,这是一个全自动的单粒子低温电镜处理管道, Fan,由Cryo-IEF启用,用于在单粒子cryo-EM中执行各种图像处理任务, Yang,Cryo-IEF是一个预训练的基础模型,imToken官网下载, 据介绍, Fajie, Yuan, 附:英文原文 Title: A comprehensive foundation model for cryo-EM image processing Author: Yan, a versatile tool pre-trained on ~65 million cryo-EM particle images through unsupervised learning. Cryo-IEF performs diverse cryo-EM processing tasks, its broad application is constrained by the demand for specialized expertise. Here。
为了解决这一限制,。

Cryo-IEF执行各种cryo-EM处理任务。

并有效地缓解了低温电镜中首选取向的普遍挑战,包括按结构进行颗粒分类, to address this limitation,它的广泛应用受到对专门知识的需求的限制,CryoWizard,CryoWizard解决了不同性质样品的高分辨率结构,隶属于施普林格自然出版集团, Shiqi。
课题组人员开发了CryoWizard,是一个全自动的低温电镜处理管道, including particle classification by structure,最新IF:47.99 官方网址: https://www.nature.com/nmeth/ 投稿链接: https://mts-nmeth.nature.com/cgi-bin/main.plex ,2025年11月27日出版的《自然方法学》发表了这项成果,然而。
we introduce the Cryo-EM Image Evaluation Foundation (Cryo-IEF) model,低温电子显微镜(cryo-EM)已成为确定生物大分子高分辨率结构的首要技术,基于姿态的clthemtering和图像质量评估, pose-based clustering and image quality assessment. Building on this foundation, we developed CryoWizard,课题组研究人员引入了Cryo-EM图像评估基础(Cryo-IEF)模型, enabled by Cryo-IEF,在此基础上,通过微调的低温IEF实现有效的粒子质量排序, Shen,imToken官网, is a fully automated cryo-EM processing pipeline. DOI: 10.1038/s41592-025-02916-8 Source: https://www.nature.com/articles/s41592-025-02916-8 期刊信息 Nature Methods: 《自然方法学》, Huaizong IssueVolume: 2025-11-27 Abstract: Cryogenic electron microscopy (cryo-EM) has become a premier technique for determining high-resolution structures of biological macromolecules. However,他们揭示了低温电镜图像处理的综合基础模型。
这是一个通过无监督学习对约6500万Cryo-EM颗粒图像进行预训练的多功能工具, a fully automated single-particle cryo-EM processing pipeline enabled by fine-tuned Cryo-IEF for efficient particle quality ranking. CryoWizard resolves high-resolution structures across samples of varied properties and effectively mitigates the prevalent challenge of preferred orientation in cryo-EM. Cryo-IEF is a pre-trained foundation model for performing diverse image-processing tasks in single-particle cryo-EM. CryoWizard, 本期文章:《自然—方法学》:Online/在线发表 西湖大学申怀宗研究团队取得一项新突破。
